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Using the method o f  traveling waves, we investigate the effect o f  volumetric sources and sinks o f  mass  and  

energy on the motion of  gas. We assume that the strengths o f  the sources are power func t ions  o f  the 

temperature and density. The solution of  the corresponding system of ordinary differential equations is 

constructed analytically: the sought funct ions are represented in explicit or implicit form. I t  is shown that 

the presence of  sources or sinks leads to substantially new properties of  the solutions of  the equations of  gas 

dynamics. Depending on the initial parameters of  the problem, the solution may  exist both at any ins tant  o f  

t ime t > 0 and only in a f inite interval of  t. 

Introduction. In the study of motion and heat transfer in a continuous medium problems of gas dynamics 

with allowance for different kinds of nonlinear volumetric sources and sinks are of great interest. We know, for 

example, what role in the heating and compression of a high-temperature plasma is played by energy release due 

to laser-radiation absorption, volumetric losses of energy in intrinsic thermal radiation, and energy release from 

thermonuclear reactions. The heating and compression of plasma by an axial magnetic field (theta-pinch) are 

influenced greatly by mass losses through the end faces of the plasma pinch and end-face energy losses due to 

longitudinal electronic heat conduction [ 1-6 ]. 

The  present work is devoted to mathematical simulation of the motion of a gas with allowance for volumetric 

mass and energy sources and sinks. This simulation includes not only development of corresponding numerical 

methods and setting up of programs and numerical calculations, but also a preliminary qualitative analysis that 

makes it possible to elucidate the characteristic features of the process investigated. Different analytical methods 

are used for this purpose, including techniques of self-similar and other types of invariant-group solutions (of the 

traveling-wave type, exponential type, and others). Results of investigations of self-similar motion of gas in the 

presence of nonlinear mass and energy sources and sinks and volumetric forces in the medium are presented in 

monograph [7] (see also the bibliography to that work). In [3, 6, 8] different techniques (different models) of 

allowance for mass and energy losses in a moving medium are considered. It is assumed in one of the models that 

particles that leave an element of the flow carry away energy. This assumption is used, for example, in the case 

where a change in mass in an element of flow is associated with its transfer by products of thermonuclear reactions 

[9, 10 ]. Another model takes into consideration that escaping particles have a corresponding energy and, moreover, 

do the work against pressure forces. Therefore, the particles carry away enthalpy. This model was used to describe 

mass losses from the end faces of a plasma pinch in compression and heating of plasma in theta-pinches [1-6 ]. 

We investigate the influence of volumetric sources or sinks on the motion of gas by the method of traveling 

waves. Just as in [11-14 ], we assume that traveling waves propagate in the medium due to the effect of a piston. 

We carry out investigation assuming the validity of the equations of state of an ideal gas and a power dependence 

of the strength of sources and sinks on thermodynamic quantities. We show that the presence of sources and sinks 

leads to substantially new properties of the solutions of the equations of gas dynamics. At certain values of the 
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problem parameters  a solution of the traveling-wave type exists only for a finite time, as is the case in a hea t -  

conducting medium without regard for sources and sinks [11-15]. At o ther  values of the parameters ,  s imilar ly to 

the case where only energy sources and  sinks are  taken into account in a nonconduct ing medium [7 ], the solution 

may exist  at any  instant  of time t > 0. 

The  authors  are grateful to I. I. Galiguzova and A. V. Zakharov for their  help in prepar ing this work for 

publication. 

1. S ta tement  of  the Problem. A system of equations of gas dynamics  with allowance for volumetr ic  mass 

and  energy sources or sinks under  the assumption that  the velocity of the particles arriving at a flow e lement  or 

escaping from it coincides with the velocity of the gas can be written for the case of plane symmet ry  in the following 

form [4, 61: 

O~ + 0 (1.1) 
Ot  -g;r ( p v )  = - P Z  , 

o o (p,,2) o e  0 . 2 )  
o-5 (or) + ~ + o r  = - p z v ,  

v (1.3) 
Oot e +  + -~r v e + -~ + = G - p z  e + T + v 0 . 

Here,  v 0 = 1 if the particles carry away or bring enthalpy,  and v 0 = 0 when this is energy.  Th e  thermal  conduct ivi ty 

of the medium is not taken into account.  

Similarly to [4, 7, 16, 17], it is convenient  to select, as the space coordinate,  the pa ramete r  q, which is 

def ined by the initial distribution of mass: 

q = m (0) = r(~)p (Y, O) d y .  (1.4) 

r0(0) 

We pass from the Euler variables r, t to the quasi-Lagrangian coordinates  q and t L by the formulas  

o o p v  o o _ ,o o (1.5) 
o r -  Ot L g' O q '  Or ~ Oq ' 

where the function g, = g,(q, t) = O m / O q  determines  the fraction of the mass left in, or acquired by, the given e lement  

of the flow. 

Omitting the subscript L at t, we write the system of equations (1.1)-(1.3) in the following form: 

O~ (1.6) 
Ot - X¥' • 

o o °v , l , ,  

Ov 1 0 P  
Ot ~ O q '  

Ol -- P ~  

(1.8) 

P (1.9) G + Z ( 1  - v 0 ) ~ - ,  + p  

We will assume the equations of state of an ideal gas to be valid: 
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R 0 1 P 
P = R o P T ,  e = - - T - - -  

y - - 1  y - l p '  
( l .10)  

where  R 0 is the gas constant ;  y > 1 is the constant  ratio of the specific heat  capacities. 

T h e  s t reng ths  of the  sources  or  sinks X and  G will be  a s sumed  to be  power functions of t h e r m o d y n a m i c  

quantities: 

X =ZO TaOp bO , G = G O T a l p  bl , (1.11) 

where  Xo < 0, Go > 0 for sources of mass  and  energy,  and  X0 > 0, Go < 0 for their  sinks. 

Somet imes  it is convenient  to consider  the energy  equation (1.9) in an  en t ropy  form, in t roducing  the 

so--called "entropy"  function 

We represent  Eq. (1.9) as 

Y = e p - O  ' - 1 )  RO Tp-fy-l) 
- y - - - 1  

( 1 . 12 )  

OX -~, 
0-7 = p G + (y - 1) (1 -- Vo) XX. (1.13) 

Using Eq. (1.12), we can represent  formulas  (1.11) in the fo rm 

X = Xo (7 -- 1) aO RO aO Xaop aOO'-l)+bO • 
(1.14) 

G = G O (y - 1) al RO al X al p alO'-l)+bl . 

T h e  dimensions  of the quanti t ies G, X, and  P are  in terre la ted as [G ] = IxP i. We will a s sume  below tha t  

G = ~ o z P ,  (1.15) 

where  ;t o is a d imensionless  constant ,  with ;to = GO/(XoRo) at Z0 ;~ 0. It follows from (1. I 1) that  in the case  of (1.15) 

the following condit ions are  satisfied: 

(1.16) a I = a o +  I ,  b I = b 0 +  1. 

In the case of (1.15), using (1.6) and  (1.11), Eq. (1.13) can be wri t ten as 

0 . .CXg'(r-OO-~°+x°)~ = 0 (1.17) 

The  gasdynamic  and  thermal  quanti t ies that  describe traveling waves depend on the coord ina tes  q and  t 

not separa te ly ,  but in the combinat ion  q - Dr, where D is a constant:  any  sought  function can be r ep re sen ted  in 

the  form F(q, t) = F(q - Dt). We formulate  the  following problem. Let a p lane  piston move into a nonconduct ing  

gas with volumetric mass  and  energy  sources or  sinks. In this case the bounda ry  condit ion on the piston is specified 

in such a way that  a traveling wave moves in front of the piston. We will de te rmine  below how to specify such a 

regime on the piston. We will character ize  the interface between the gas and  the piston by  the coord ina te  q = 0. 

T h e  gas is located in the region q > 0. 

Let the following condit ion be ass igned at q = 0: 

v (0, t) = v. ( 0  > O. (1 .18)  

Next ,  when t = 0 and  t > 0 let there  be no sources or sinks ahead  of the t ravel ing-wave front  and  the gas  be  cool 

and  s tagnant  and  have the cons tant  initial dens i ty  p = P0 = const,  i.e., let the following condit ions be  satisfied: 
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~ = 1 ,  T = 0 ,  v = 0 ,  P = P o "  (1.19) 

The independent  variables and  functions that satisfy system of equations (1.6)- (1.12), (1.14) can be rep- 

resented in the following dimensionless form: 

Dt - q PO v (q, t) 
s - - - ,  r / = r / ( s ) - - - ,  a = a ( s ) -  - I  ' 

M 0 p (q, t) O Po 

? (q, 0 R 0 r  (q, 0 
= ( s )  - Z, o' ' s = s(,) - 

, X '=  ~ ( s )  -- Z (q, t) ( 1 .20 )  
D M  01 ' 

G (q, t) Z (q, t) 
= G ( s )  = D 3 M o I P o I  , ~ = ~ ( s )  = O2po0,+l) ,  ~O=~o(s) = g , ( q , t ) .  

H e r e  r/ is the  rec iprocal  of the  d e n s i t y ;  it is the  specific volume wr i t t en  in d i m e n s i o n l e s s  fo rm;  Mo = 
IXo I I RoaOD-2aO+lpo2aO-bo is a dimensional constant. 

Let us go over to variables (1.20) using the following differential relations: 

0 D d O 1 d 
Ot M o ds ' Oq M o d s "  

Denoting d / d s  by a prime, we obtain from the initial system of partial differential equations (1.6)-(1.9),  

with allowance for (1.10), the following system of ordinary differential equations in one independent  variable s: 

= - 2 w ,  (1.2I)  

(~or/) = - a ,  (1.22) 

' 1 fr / - I  = ~ / f ,  / ~ =  (1.23) 

where 

7/ 1 f = - f i r /  + + (1 - v 0 )  z f i r / ,  (1.24) 

f ,  a 0 /x Z=Zof r / - b 0  = X0 (7/ - 1) ao ~ ao r / - a O ( y -  1 ) -bO 
(1.25) 

/ x  A A 

G = Go faO+! r/-(b0+l) = G O (7/ - 1) ao+! ~ ao+l r/-a00'-l)-~'-bo 

We will assume that  the condition q = Dt corresponds to the traveling-wave front and,  consequent ly,  s = 0. 

The perturbed region is located in the interval s >_ 0. Conditions (1.19), which must be satisfied when s -< 0, take 

the following form in variables (1.20): 

(p = 1 , f = 0 ,  a = 0 ,  r/ = 1 . (1.26) 

In the case where the piston moves into the gas, a compression wave propagates ahead of it, which can 

have a strong discontinuity of shock-wave type moving over the background (1.19) (see [15, 18, 19 ]). 

We denote values of the sought functions behind the shock-wave front by the subscript 1: 
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f = f l  ' a = a I , r] = r ] l  . (1.27) 

The  function T is continuous: 

= ~O 1 = I . (1.28) 

In  the presence  of a discontinuity,  sys tem of equations (1.21)-(1.25) mus t  sat isfy condit ions (1.27) a n d  

(1.28) at  s = 0 .  The  values (1.27) are  connected with (1.26) by relat ions that  follow from conservat ion laws at  the 

discont inui ty  front  (by Hugoniot  conditions [ 15, 19 ]). With al lowance for (1.19), these condit ions a re  r e p r e s e n t e d  

as follows in initial (dimensional)  variables: 

= y + l  2 1 
P = P l y - 1 P 0 ,  v = v 1 - -  y + l - -  D P o  

P = P I  - 2 D2Po 1 T =  T 1 - 1 2 ( y - -  1) O2/90 2,  (1.29) 
y + 1 ' R 0 (y + 1) 2 

0' + 1) 2 ¢ '  + 1) 

In var iables  (1.20) condit ions (1.29) take the form 

, ¢ = ~ 1 = I .  

y - 1  2 2 
~1 - -  y + 1 ' a l  - - - y + l '  f l l  - - - y + l  ' 

(1.30)  

_ 2 y - 1  v 
f l  = 2 ( Y -  1) ' ,  2 (7 - -~1)  ' ~°l = 1" 

(y + 1) 2 ' y - 1 

Equation (1.22) can be integrated.  Tak ing  into account condit ions (1.27), (1.28), and  (1.30),  we obta in  

a = 1 -- ~or/. (1.31) 

Now, we de te rmine  the possible form of function (1.18) specified on the piston. By assumpt ion ,  the  in ter face  

between the gas and  the piston is the coordinate  q = 0. From (1.20) it follows that  the d imensionless  i ndependen t  

variable s is de te rmined  at q = 0 by the formula s = D t / M  o. Therefore ,  the function a = a(s )  at s = D t / M o  will 

describe in dimensionless  form the gasdynamic  regime specified on the piston. Solving sys t em of equat ions  (1.21)-  

(1.25) with boundary  condit ions of the form (1.27), (1.28) at the point s = 0 to de te rmine  the funct ion a = a(s )  = 

a ( D t / M o ) ,  we find the cor responding  expression for the function v.(t) in formula  (1.18): 

It is evident that  the solutions considered have physical mean ing  only in the case  where  the var iab le  s 

increases s tar t ing f rom the value s = 0, because the time t > 0 should increase.  

Equation (1.17) takes the following form in variables (1.20): 

[,~ 0 t -  l ) ( l  - -v  0+~ .0 )  ] '  = 0 .  (1.32)  

In tegra t ing  (1.32), we obtain 

,~o( r -  1)(1 -v0+~0)  = C o .  (1.33) 

When s = 0, the sought  functions must  sat isfy conditions (1.27) and  (1.28), where  the pa r ame te r s  with subscript  

1 a re  def ined by formulas  (1.30). From the indicated conditions we have 
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We write formula (1.33) as 

2 7 - I  

7 - 1  

= ~.lso-(;,- 1)(I -vo+,lo) (1.34) 

Formula (1.34) is valid in the region s _> 0. When s < 0, we must have ~ - 0. The  dimensionless  pressure  fl and 

t e m p e r a t u r e / f u n c t i o n s  can be expressed in terms of the specific volume ,7 and the en t ropy  function ~: 

fl = (y - 1) ~ / - Y ,  f = (y - 1) ~r]  - 7 + 1  . (1.35) 

Using (1.34), (1.35), and expression (1.25) forz'~ we reduce the problem considered to the solution of two o rd ina ry  

differential  equations of the form 

so' = - XO (7 - 1) % ~l a° so -aoO'-D(l-~o+go)+l ~/-a°(y-l)-bo , (1.36) 

y+l so-(y-U(l-vO+aO)-2 ] so '7 - ( y -  1 ) ~ r  , f =  

[~y+ ,  - ] = --r/  -- (7 - -  1) 2(1 - - v  0 + ; t O ) ~ I s o  (Y-l)(1-v0+'10)-2 

The  solution of Eq. (1.36) and (1.37) must  satisfy the conditions 

so. (1.37) 

so (O)=  1,  ~ / (0 )=~ / I  - - -  
7 - 1  
7 + 1 '  (1.38) 

The  solution is sought in the region s > 0. When s < 0, we have 

SO-= I ,  ~/-= 1. (1.39) 

There  is a strong discontinuity at the point s = 0. 

2. Influence of  Sources  and Sinks on the Distribution of the Ent ropy  Funct ion ~ = ~(s) and the Funct ion 

SO = SO(s). Below we assume 

a t ) ( y -  1) + b o = 0 .  (2.1) 

Under  condition (2.1) Eq. (1.36) can be integrated.  Let us consider various cases. 

a) a0(1 - vo + ;t 0) = 0. The  solution of Eq. (1.36) under  condit ion (2.1) with allowance for the condit ion 

SO(0) = 1 has the form 

so = e x p ( - x o ( 7  - 1)  
(2.2) 

b) ao(1 - vo + ;to) ;~ 0. The  solution of Eq. (1.36) is de te rmined  by the formula 

] l / t%(y- l )(1 -v  o +~o) 1 (2.3) 
so= 1 - x o ( 7 -  

The  qualitative character  of the distribution of functions (2.2) and (2.3) is depicted in Fig. 1. 

In the case of volumetric losses of mass (Z~o = 1, ;to = Go), we obtain that,  when  Go < v0 - 1, the function 

~,, = ~o(s) decreases with increase in s and attains the value ~o(oo) = 0 at s = oo (see the solid line in Fig. lb) .  When 

G o > v 0 - 1, with increase in s from s = 0 the function SO = SO(s) vanishes at a certain finite value 
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Fig .  I .  D i s t r i b u t i o n  of  t he  func t ion  7' = ~,(s) a t  Z'o = 1 ( m a s s  s ink)  a n d  X'o = 

- 1  ( m a s s  in f low) :  a) a o ( 1 -  vo + 20) = 0 a t  X'o = 1 ( so l id  l ine)  a n d  ~'o = - 1  

( d a s h e d  line),; b) a n d  c) G O < v 0 - l a t  X"o = 1 a n d  Go < 1 - v 0 a t  ~ =  - 1  

( so l id  l i ne ) ,  Go > vo - 1, X'o = 1 a n d  Go > I - vo, Z'o = - I  ( d a s h - d o t  l i ne ) .  

A 

s = ~ = 1 / [ ( r  - l )  ~o+1 ~ (1 - ~o + Go)l- (2 .4)  

T h i s  m e a n s  t h a t  in  t h e  i n d i c a t e d  c a s e  a so lu t i on  of  t he  t r a v e l i n g - w a v e  t y p e  ex i s t s  o n l y  w h e n  0 < s < s l  a n d ,  

c o n s e q u e n t l y ,  o n l y  for  t h e  f in i t e  t ime  0 _< t < t 1 ( see  the  d a s h - d o t  l ine  in  Fig.  1 b) .  

W h e n  ~ ' =  - 1 ( m a s s  in f low) ,  we o b t a i n  ~10 = - G o .  F r o m  Eq. (2.3) it  fAollows t h a t  a s o l u t i o n  m a y  e x i s t  in  t he  

e n t i r e  r a n g e  of  t h e  i n d e p e n d e n t  v a r i a b l e  0 < s < o o  (0 < t ___ Qo) w h e n  G O < 1 - v o a n d  in t h e  f i n i t e  i n t e r v a l  

0 ___ s < s2 ( i .e . ,  for  t he  f in i t e  t ime  0 ___ t < t2) w h e n  Go > I - v o, w h e r e  

{  ̂ } s 2 = 1 /  [G 0 -  (1 - V O ) ] ( 7 -  1 ) a o + l ~ l  aO . ( 2 . 4 ' )  

H e r e  in t he  f i r s t  c a se  ~o(oo) -- oo a n d  in  t he  s e c o n d  case  ~o(s2) = oo (see  Fig.  l c ) .  T h e  i n s t a n t s  of  t ime  tl a n d  t2 a r e  

d e t e r m i n e d  b y  a f o r m u l a  of t h e  fo rm 

M °  D -  2a0 p o  2a° -  b° t,,2 = - - - D - * I , 2  = Ixoll R ~  si,z. (2.5) 

W e  d e t e r m i n e  the  p o s s i b l e  d i s t r i b u t i o n  of the  func t ion  ~ -- ~(s )  in t he  r eg ion  s > 0 in each  of  t h e  a b o v e  

cases  u s ing  f o r m u l a s  (1 .34) ,  (2 .2) ,  a n d  (2.3):  

a) if 1 - v 0 + 2 o = 0, t hen  in the  r eg ion  0 ___ s ___ oo we o b t a i n  f rom (1.34) 

= ~l = c o n s t ,  (2 .6)  

i .e. ,  s i m i l a r l y  to t he  ca se  of  i s en t rop i c  f lows [19 ] t he  e n t r o p y  is c o n s t a n t  bo th  in  t i m e  a n d  ove r  t h e  s p a c e  c o o r d i n a t e ;  

b) if 1 - v o + 20 ~ 0, but  a 0 = 0, t hen  t a k i n g  (2.2) in to  accoun t ,  we o b t a i n  f rom Eq. (1 .34)  

A A 

= ~ l e x p ( x o ( 7 -  1 ) (1  - v  o + ~ O )  s ) ,  2 o = G O / Z O ;  (2.7)  

c) if 0-0(7 - 1)(1 - v 0 + 20) = 0, t hen  s u b s t i t u t i n g  (2.3) in to  (1 .34) ,  we o b t a i n  

] - l / a  o (2.8)  t =  1 -ZO(7- l)aO+l tlao(1-VO +~lo)S 
/ x  

F r o m  Eq. (2.8) it  fo l lows t ha t  f o r 2 o  = 1 (20 = Go) a so lu t ion  can  ex i s t  in t he  e n t i r e  r eg ion  0 _< s _< ~ if t he  c o n d i t i o n  

Go < vo - 1 is s a t i s f i ed ,  wi th  ~ ( ~ )  = 0, a n d  o n l y  on the  f in i te  i n t e rva l  0 _< s _< sl  f o r g o  > vo - 1, w h e r e  t he  

p a r a m e t e r  Sl is d e f i n e d  b y  f o r m u l a  (2 .4) .  In th is  case  ~ ( s t )  = ~ .  W h e n  ~'o = - 1  (;t o = - G o ) ,  a s o l u t i o n  c a n  ex i s t  
A ~ 

for  0 _< s _< oo if GO < 1 - v0, wi th  ~(oo) = 0, a n d  ex i s t s  o n l y  on  the  f in i te  i n t e rva l  0 _< s _< s2 for  GO > 1 - v o. 
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3. C h a r a c t e r  o f  the Dis t r ibu t ion  of  the D i m e n s i o n l e s s  Func t ion  of  the Speci f ic  Vo lume  a n d  O t h e r  

G a s d y n a m i c  Quanti t ies.  We investigate the charac te r  of the dis tr ibut ion of the function r /=  r/(s) for the case where  
t ' x  

there  a re  volumetr ic  mass  losses in a per turbed  medium,  i.e., f o r z o  = 1. We consider  a n u m b e r  of typical  cases.  

1 °. Suppose Go = v0 - 1 - 2 / ( y  - I) .  Forx~0 -- 1 Eq. (1.37) takes the form 

Int roducing the change  of variables  

1 rlY+l (3 .2 )  
Y = 7 ( 7  - 1 ) ~ 1  

and  selecting ~o as the  independen t  variable,  f rom Eq. (3.1) we obtain  

dy ~ _ O' + I) y y + 2 / y  (3.3) 
d~, ~ y - - - i  • 

The  solution of Eq. (3.3) should satisfy the boundary  condit ions that  cor respond  to condi t ions (1.38) a t  the point 

s = 0 (the t ravel ing-wave front):  

r]y+ 1 
1 y -  1 (3 .4 )  

99= 1,  Y = Y l  y ( y - -  1 )~  1 2y < 1 

Equation (3.3) has an  analyt ical  solution that  allows one to express  T in te rms of y. Tak ing  into account  b o u n d a r y  

condition (3.4), we find 

1 " 1 )  _+ 2/q 
= - +  2/y ) Yl (3.5) 

In this case, by  virtue of (3.2) 

r/ = [7 (y - 1)~lYl  l / ( y + D  (3.6) 

From formulas  (2.2) and  (2.3) it follows that  the function ~o changes  within the range  0 _< s _< oo, with 

~o(oo) = 0. In the case of ao = 0, f rom Eq. (2.2) we obtain 

s = -- In ~ ,  0 _< s < oo , (3.7) 

and  for ao ;~ 0 f rom (2.3) we obtain 

1 - ~, 2ao 
S =  , 0 < S < O O .  (3.8) 

2(7-  1) °° ~l°° oo v 2°° 

T h e  functions s e, f ,  a ,  and/3  can be de te rmined  f rom formulas  (1.34), (1.35), and  (1.31): 

~17 '2 , f (7 1) ~r] - ( y - l )  fr] -1 (3.9) = = - , a = l - ~ , r / ,  / 3 =  . 

A 

2 °. Suppose Go > v0 - 1 - 2 / ( y  - 1). An analysis  of Eq. (1.37) carr ied out s imilar ly  to the  previous one 

gives the following results. 

When GO = vo - 1, the function r /=  r/(s) can be represen ted  in implicit form: 
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Fig.  2. D i s t r i b u t i o n  of d i m e n s i o n l e s s  spe c i f i c -vo lume  r / =  r/(s) a n d  t e m p e r a t u r e  

f = f ( s )  func t ions  r e f e r r e d  to t he  in i t i a l  va lues  r/(0) = r/l ,  f ( 0 )  = f l  a t  y = 5/3 ,  

X0 = 1, Go = -~3 for  t he  cases  of  ao = 0 ( so l id  l ines)  a n d  a 0 = 0 .5  ( d a s h e d  

l i ne s ) .  

\N 

i i i i I 

# 2 s 

Fig.  3. D i s t r i b u t i o n  of the  ve loc i ty  func t ion  a -- a(s)  a n d  the  func t ion  ~o = ~o(s). 

T h e  n o t a t i o n  is t he  s a m e  as  in Fig.  2. 

s = l n  
,,2 

<,+,,2 - 4 y  

1 / I2x0(Z- l)aO~?l 

( 3 . 1 o )  

w h e r e  r/l = (y - 1 ) / ( y  + 1). F r o m  Eq. (3.10) it  fol lows tha t  in t he  ca se  c o n s i d e r e d  a s o l u t i o n  of  t h e  t r a v e l i n g - w a v e  

t y p e  ex i s t s  in t he  e n t i r e  r a n g e  of  t h e  v a r i a b l e  s > 0 a n d ,  c o n s e q u e n t l y ,  t >_- O. In  th i s  c a se  t h e  d i m e n s i o n l e s s  spec i f i c  

vo lume  for  0 __< s < Qo c h a n g e s  w i th in  the  r a n g e  r/l >__ r/ _> r/l [ 4 y / ( y  + 1)2]  I / ( y + I )  

W h e n  G o - - v  0 - 1 + y / ( y  - 1), we o b t a i n  

- 1  - 1  ( 3 . 1 1 )  
r/ = r / l ~ O  , f = f l ~  o 

W h e n  a o = 0, f rom Eq. (2.2) we have  ?9 = e x p  ( - s ) .  A so lu t ion  ex i s t s  in t he  e n t i r e  r a n g e  s > 0 (t > 0 ) ,  

wi th  ~o(oo) = 0, ~(oo) = oo, f(oo) = oo, r/(oo) = Qo, wh i l e  t he  p r e s s u r e  i a n d  the  ve loc i ty  a a r e  c o n s t a n t  in  t h e  e n t i r e  

r a n g e  of  t he  v a r i a b l e  s: fl = i l l ,  a = a 1. 

W e  no te  t h a t  in c o n t r a s t  to the  case  c o n s i d e r e d ,  t h e  s o l u t i o n  t h a t  d e s c r i b e s  a t r a v e l i n g  wave  is fu l ly  

"cons t an t "  a t  X = 0, G = 0, i .e. ,  w h e n  s >-- 0, a l l  t he  sough t  func t ions  have  t h e  fo rm [19 ] 

/']-----~/]1' a = a l ,  t-----~31 , f=--fl' ~ ' ~ 1 "  (3 .12)  

W h e n  ao # 0, t h e  func t ion  ~o = ~o(s) is d e s c r i b e d  by  f o r m u l a  (2 .3) .  A so lu t i on  ex i s t s  o n l y  in t he  f i n i t e  i n t e r v a l  

0 < s -< s l ,  w h e r e  

S 1 = 1 / [ ( } ' - -  1 ) a O ~ l a 0 ~ ] .  

A A 

W h e n  G ~ vo - 1 a n d  Go ~: v0 - 1 + 7 / ( 7  - 1), a n  a n a l y s i s  shows  t h a t  d e p e n d i n g  on  t h e  v a l u e s  of  t h e  

p a r a m e t e r s  Go a n d  v o t he  b e h a v i o r  of the  func t ion  r 1 = ~(s)  a n d  the  o t h e r  g a s d y n a m i c  q u a n t i t i e s  can  be  d i f f e r e n t  
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Fig. 4. Distribution of the function f(s)/ f l  a t  Y = 5 / 3 ,  ~o = 1, Go = - 3 ,  ao = 

0 for the cases of vo = 1 (solid line) and v o = 0 (dash-dot ted  line). 

Fig. 5. Profiles of the functions ~o = ~o(s) and O.05 f ( s ) / f l  at y = 5 / 3 ,  ZO = 1, 

G O -- 2.5, v0 = 1 for the cases of ao = 0 (solid line) and  ao -- 0.5 (dashed line). 

in the range s _> O. In this case a solut ion may exist both in the  range of the independent  variable s -> 0 and  only 

in the finite interval 0 _< s _< Sl. 

Resu l t s  of numerical examples that illustrate the characteristic properties of the solut ions  are presented in 

Figs. 2-5. All of the examples were considered on the assumption that there are volumetric losses of mass (X~o = l) 

at y = 5 / 3 ,  b o = - a o ( y  - 1 ) .  

The distribution of the quantities presented in Figs. 2-4 was plotted for Go = - 3 ,  i.e., for the case of an  

energy sink. The examples show the influence of the parameter  ao on the solution, i.e., the exponent  of the de- 

pendence of the mass sink strength on the temperature. It is seen that at a fixed value of s the tempera ture  is higher  

and the densi ty is lower for ao = 0.5 than for ao = 0. The numerical examples also show that a different technique 

for allowing for mass losses substantially influences the character  of the solution (see Fig. 4). 

In the examples given in Figs. 2-4 a solution exists in the entire range of the independent  variable s >_ 0. 

Profiles of the dimensionless temperature function f ( s ) / f l  and the function ~o = ~o(s) for GO = 2.5 (energy inflow) 

and vo = 1 are presented in Fig. 5. In the indicated case at ao = 0 a solution exists in the range 0 < s _< oo, with 

.f(oo) = 0% q,(oo) = 0. When ao = 0.5,  a solution exists only in the finite interval 0 < s < sl .  In the specific example 

considered, sl = 2.2. The  region of existence of the solution in time is confined within the interval 0 < t < tl, where 

t l  = 2 . 2 M 0 / o  = 2.zxo'Ro O-9o 
It was noted above that under  certain conditions a solution of the traveling-wave type exists only over a 

finite interval of the independent  variable s and, consequently,  only for a finite time 0 <_ t <_ q .  In particular,  under  

certain conditions the sought solution exists until the following condition (see Eq. (1.37)) is satisfied: 

1 r]7+1 7 0 '  - 1) ~1 ~ ( y - l ) ( l - v 0 + j ' 0 ) + 2  = 1. (3.13) 

Using formula (1.34), relation (3.13) is written as 

2 
= ( 7  - 1)  - r - 1  (3.14) 

or by virtue of (1.35) 

2 -1 (3.15) 
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We go over to the initial dimensional  variables by formulas (1.20). Relat ion (3.15) takes the form 

2 = 7 PP (3.16) 
D 2 • 

It is known from gas dynamics [19 ] that in the case where the equations of state of an ideal gas (1.10) are  valid, 

the combination yPp determines the square of the "mass" speed of sound CM = pCy, where Cy -- v t ~  -. Taking  

the latter into account,  we obtain the following expression from (3.16): 

2 D 2  = CM . 2  (3.17) 

By definition, ~ = Om/dt.  The  mass velocity of the traveling-wave front at the point considered can be de te rmined  

from the relat ion 

DM = Om (q, t) _ O m  Oq _ tpD (3.18) 
Ot Oq Ot " 

With allowance for (3.18), formula (3.17) is writ ten as 

DZM=GZ g . (3.19) 

Thus ,  at the point where condition (3.13) is satisfied, the mass velocity of the traveling wave coincides with 

the local speed of sound. Here,  in contrast  to the case where mass sinks or sources are not taken into account  (see 

[7, 11-14 ]), the mass velocity of the traveling-wave front is not constant:  it is proportional  to the function ¢, = ~(q ,  

t), i.e., to the fraction of the mass left or acquired in the considered element  of the flow. 

N O T A T I O N  

t, time; r, Euler  spatial coordinate;  tL, quasi-Lagrangian t ime coordinate;  m, Lagrangian mass coordinate;  

q, quasi-Lagrangian mass coordinate;  p ,  densi ty;  v, velocity; P, pressure; T, temperature;  e, specific internal  

energy;  Z = Z(P, 73 and G -- G(p, 73, s t rengths of volumetric mass and energy sinks (Z > 0, G < 0) or sources 

(X < 0, G > 0),  respectively; ~p = ~p(q, t), fraction of the mass left or acquired in the given element  of the flow; s, 

dimensionless "self-similar" variable; 77 = r/is), a = a(s ) ,  fl = tics), f = f ( s ) ,  ~'= e~(s), dimensionless specific volume, 

velocity, pressure,  temperature,  and specific internal  energy functions of the variable s, respectively; Z = Z(q,  t) 

and  ~ = ~(s), dimensional  and dimensionless "entropy" functions, respectively; ao and  b0, exponents  of the depend-  

ence of the s t rength  of the mass source and sink on the tempera ture  and densi ty;  Z'0 -- 1 for the case of a mass 

sink; Z'0 = - 1 for  the case of mass inflow at the given element of the flow; Go, dimensionless constant  in the formula 

that expresses the s trength of the energy source (G O > 0) or sink (G O < 0). 
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